Формулы / Группы, кольца и поля / Поле / 1 2 3 4 5 6
Подполе. Простое поле. Множество M поля P называется подполем P, если оно само является полем при тех же операциях сложения и умножения, которые заданы в поле P. Тогда P называется надполем или расширением поля M.
Так, поле рациональных чисел является подполем поля действительных чисел, а последнее - подполем поля комплексных чисел.
Теорема 5. Для того чтобы множество M поля P, содержащее не менее двух элементов, было подполем, необходимо и достаточно, чтобы сумма, разность, произведение и частное (если только оно существует в P) любых элементов из M снова принадлежали к M.
Доказательство вполне аналогично проведенному для соответствующей теоремы о кольцах (теорема 4).
Всякое подполе M поля P содержит 0 как разность a - a, где , и единицу как частное , где , a ≠ 0.
Теорема 6. Пересечение (в смысле пересечения множеств) любого множества надполей поля P опять является подполем поля P.
Соответствующая теорема верна и для колец, т. е. пересечение любого множества подколец кольца R есть подкольцо кольца R. Доказательство ее вполне аналогично данному здесь для полей.
Доказательство. Пусть {Ms} есть некоторое множество подполей, где индексы s образуют множество S и - пересечение всех подполей Ms данного множества; 0 и 1 входят в каждое подполе Ms и, значит, в D. Итак, D содержит не менее двух элементов. Если a и b - элементы D, то они входят в каждое Ms и по теореме 5 a + b, a - b, ab, а при b ≠ 0 и также входят в Ms, а значит, и в D. В силу теоремы 5 D - подполе поля P.
Поле, не имеющее подполей, отличных от него самого, называется простым.
Примерами простых полей могут служить поле рациональных чисел и поля вычетов по простому модулю p.
Любое подполе M поля P рациональных чисел содержит число 1, а значит, и все его кратные n · 1 = n, т. е. все целые числа, а значит, и все их частные, т. е. все рациональные числа. Итак, M = P, т. е. P - простое поле. Точно так же любое подполе M поля Cp вычетов по простому модулю p содержит класс (1), служащий единицей Cp, а значит, любой класс (r) как r-кратное класса (1). Итак, M = Cp, т. е. Cp - простое поле.
Можно доказать, что этими полями в некотором смысле исчерпываются все простые поля.
Теорема 7. Любое поле содержит простое подполе и притом только одно.
Доказательство. Поле P вообще содержит подполя (например, само P). Пусть D есть пересечение всех подполей поля P. По теореме 6 D является подполем P и по самому определению входит в любое подполе. Пусть M - подполе D, отличное от D.
Из определения подполя следует, очевидно, что M будет подполем и для P, и D не входит в M, что невозможно. Итак, D - простое подполе P. Если D' - также простое подполе поля P, то пересечение будет опять подполем поля P, причем и . Но из определения подполя следует, что в таком случае D" будет подполем как для D, так и для D', а так как D и D' - простые подполя, то D = D" = D', чем доказана единственность простого подполя.
-1-2-3-4-5-6-
|
|