Геометрия пространств со скалярным произведением / Унитарные пространства / 1 2 3 4 5 6 7 8 9 10 11
а) Унитарное пространство , называемое пространством состояний системы. Такие пространства, рассматриваемые в стандартных учебниках, по большей части являются бесконечномерными гильбертовыми пространствами, которые реализуются как пространства функций на моделях "физического" пространства или пространства-времени. Конечномерные пространства возникают, грубо говоря, как пространства внутренних степеней свободы системы, если она рассматривается как локализованная или если ее движением в физическом пространстве можно так или иначе пренебречь. Таково двумерное унитарное пространство "спиновых состояний" электрона, к которому мы еще вернемся.
б) Лучи, т. е. одномерные комплексные подпространства в , называются (чистыми) состояниями системы.
Вся информация о состоянии системы в фиксированный момент времени определяется заданием луча   или ненулевого вектора  , который называется иногда -функцией, отвечающей этому состоянию, или вектором состояния.
Фундаментальный постулат о том, что -функции образуют комплексное линейное пространство, называется принципом суперпозиции, а линейная комбинация     , описывает суперпозицию состояний   . Заметим, что, поскольку физический смысл имеют только лучи  , а не сами векторы , коэффициентам aj также нельзя приписать однозначно определенного смысла. Однако, если выбирать нормированными,   , и линейно независимыми, а также нормировать   , то произвол в выборе вектора в своем луче сводится к умножениям на числа  , которые называются фазовыми множителями; таков же будет произвол в выборе коэффициентов aj, которые мы сможем тогда сделать вещественными и неотрицательными, что вместе с условием нормировки     позволяет определить их однозначно.
-1-2-3-4-5-6-7-8-9-10-11-
|