Прикладная математика
                               Cправочник математических формул
                                          Примеры и задачи с решениями

Алфавитный указатель  а б в г д е ж з и к л м н о п р с т у ф х ц ч ш щ э ю я  

  • Математические формулы

  • Примеры решения задач

  • Некоторые постоянные
  • Элементарная геометрия
  • Геометрические преобразования
  • Начала анализа и алгебры
  • Уравнения и неравенства
  • Аналитическая геометрия
  • Высшая алгебра
  • Дифференциальное исчисление
  • Дифференциальная геометрия
  • Интегральное исчисление
  • Комплексный анализ
  • Элементы теории поля
  • Тензорное исчисление
  • Дифференциальные уравнения
  • Математическая логика
  • Теория вероятностей и
     математическая статистика





     Формулы / Множества / Упорядоченные множества / 1 2 3 4


Упорядоченные множества

     Определение 1. Множество M называется упорядоченным, если между его элементами установлено некоторое отношение a < b ("a предшествует b"), обладающее следующими свойствами: 1) между любыми двумя элементами a и b существует одно и только одно из трех соотношений: a = b, a < b, b < a; 2) для любых трех элементов a, b и c из a < b, b < c следует a < c.

     Пустое множество считается упорядоченным.

     Замечание. Знак = мы всегда понимаем в смысле тождества, совпадения элементов. Запись a = b просто означает, что буквами a и b обозначен один и тот же элемент множества M. Поэтому из свойства 1) следует, что между двумя различными элементами выполняется одно и только одно из двух соотношений a < b или b < a.

     Если a предшествует b, то говорят, что b следует за a и пишут: b > a.

     Отношение a > b обладает, как легко проверить, свойствами, аналогичными 1) и 2). Его можно принять за основное, определив тогда через него отношение a < b.

     Если в упорядоченном множестве M поменять ролями отношения < и >, т. е. вместо a < b писать a > b, и наоборот, то получится новое упорядоченное множество M', порядок которого называется обратным относительно порядка M. Например, для приведенного выше порядка во множестве натуральных чисел обратным будет порядок:

..., 3, 2, 1.

     Два упорядоченные множества, составленные из одних и тех же элементов, но расположенные в разном порядке, считаются различными. Поэтому при задании упорядоченного множества через его элементы необходимо указать их порядок. Будем считать, что запись слева направо соответствует порядку элементов, и сохраним прежнее обозначение фигурными скобками. Одно и то же множество можно упорядочить различным образом (если оно содержит не менее двух элементов). Так, множество натуральных чисел можно упорядочить обычным образом или в обратном порядке, можно нечетные числа поставить впереди четных или наоборот, располагая те и другие в возрастающем или убывающем порядке. Получим упорядоченные множества

               {1, 2, 3, ...},                    (1)

               {..., 3, 2, 1},                    (2)

               {1, 3, 5, ..., 2, 4, 6, ...},   (3)

               {1, 3, 5, ..., 6, 4, 2},        (4)

               {..., 5, 3, 1, 2, 4, 6, ...},   (5)

               {..., 5, 3, 1, ..., 6, 4, 2}.   (6)


-1-2-3-4-



© 2006- 2024  ПМ298
info@pm298.ru
     Электронный справочник по математике: математические формулы по алгебре и геометрии, высшая математика, математика, математические формулы. Задачи с решениями, примеры и задачи по математике, бесплатные решения задач, куб , собственные конические сечения

     Упорядоченные множества, определение и примеры упорядоченных множеств.