Прикладная математика
                               Cправочник математических формул
                                          Примеры и задачи с решениями

Алфавитный указатель  а б в г д е ж з и к л м н о п р с т у ф х ц ч ш щ э ю я  

  • Математические формулы

  • Примеры решения задач

  • Некоторые постоянные
  • Элементарная геометрия
  • Геометрические преобразования
  • Начала анализа и алгебры
  • Уравнения и неравенства
  • Аналитическая геометрия
  • Высшая алгебра
  • Дифференциальное исчисление
  • Дифференциальная геометрия
  • Интегральное исчисление
  • Комплексный анализ
  • Элементы теории поля
  • Тензорное исчисление
  • Дифференциальные уравнения
  • Математическая логика
  • Теория вероятностей и
     математическая статистика





     Примеры решения задач / Ряды / Степенные ряды / 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

решения некоторых задач

     Именно из неравенств (35) и (44) следует, что

     Обратим крайние члены этого двойного неравенства в десятичные дроби, причем для нижней границы возьмем эту дробь с недостатком, а для верхней - с избытком. В результате получаются неравенства

0,301029 < lg 2 < 0,3010305.     (45)

Умножая это двойное неравенство на 2 и на 3, находим:

0,602058 < lg 4 < 0,602061,     (46)

0,903087 < lg 8 < 0,9030915.     (47)

     Аналогично из (39) и (44) находим сначала, что

а затем

0,477120 < lg 3 < 0,477122.     (48)

Удваивая, находим:

0,954240 < lg 9 < 0,954244.     (49)

Складывая неравенства (45) и (48), получаем:

0,778149 < lg 6 < 0,7781525.     (50)

Вычитая же все члены неравенства (45) из единицы, находим:

0,6989695 < lg 5 < 0,698971.     (51)

     У нас уже найдены десятичные логарифмы всех чисел первого десятка, кроме lg 7.

     Для нахождения этого последнего логарифма мы снова должны обратиться к формуле (30), положив в ней N = 6. Это дает

Из (35) и (39) находим, что

1,7917591 < ln 6 < 1,7917596.


решения некоторых задач


-1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22-23-24-25-26-27-28-29-30-31-32-33-34-35-36-37-38-39-



© 2006- 2024  ПМ298
info@pm298.ru
     Электронный справочник по математике: математические формулы по алгебре и геометрии, высшая математика, математика, математические формулы. Задачи с решениями, примеры и задачи по математике, бесплатные решения задач, конус , координаты вектора в базисе

     Нахождение логарифмов lg 2, lg 3, lg 4, lg 5, lg 6, lg 7, lg 8, lg 9.