Прикладная математика
                               Cправочник математических формул
                                          Примеры и задачи с решениями

Алфавитный указатель  а б в г д е ж з и к л м н о п р с т у ф х ц ч ш щ э ю я  

  • Математические формулы

  • Примеры решения задач

  • Некоторые постоянные
  • Элементарная геометрия
  • Геометрические преобразования
  • Начала анализа и алгебры
  • Уравнения и неравенства
  • Аналитическая геометрия
  • Высшая алгебра
  • Дифференциальное исчисление
  • Дифференциальная геометрия
  • Интегральное исчисление
  • Комплексный анализ
  • Элементы теории поля
  • Тензорное исчисление
  • Дифференциальные уравнения
  • Математическая логика
  • Теория вероятностей и
     математическая статистика





     Формулы / Дифференциальная геометрия / Специальные классы линий и поверхностей / 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29


     Линии в пространстве

     Винтовая линия (рис. 7.20)

     Винтовая линия - линия, описываемая точкой M, которая вращается с постоянной угловой скоростью w вокруг неподвижной оси (Oz) и одновременно перемещается поступательно с постоянной скоростью v вдоль этой оси.

     Параметрические уравнения:

или

где a - радиус цилиндра, на котором расположена линия; - шаг винтовой линии.

     Проекции винтовой линии на координатные плоскости:

       на плоскость xOy:

      - окружность;

       на плоскость yOz:

      - синусоида;

       на плоскость xOz:

      - синусоида.

     Длина винтовой линии от точки пересечения с плоскостью xOy до произвольной точки

     Параметрические уравнения винтовой линии, где за параметр принята длина дуги:

     Кривизна:

     Кручение:


-1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22-23-24-25-26-27-28-29-



© 2006- 2024  ПМ298
info@pm298.ru
     Электронный справочник по математике: математические формулы по алгебре и геометрии, высшая математика, математика, математические формулы. Задачи с решениями, примеры и задачи по математике, бесплатные решения задач, группы , отклонение точки от плоскости

     Линии в пространстве, винтовая линия.