Прикладная математика
                               Cправочник математических формул
                                          Примеры и задачи с решениями

Алфавитный указатель  а б в г д е ж з и к л м н о п р с т у ф х ц ч ш щ э ю я  

  • Математические формулы

  • Примеры решения задач

  • Некоторые постоянные
  • Элементарная геометрия
  • Геометрические преобразования
  • Начала анализа и алгебры
  • Уравнения и неравенства
  • Аналитическая геометрия
  • Высшая алгебра
  • Дифференциальное исчисление
  • Дифференциальная геометрия
  • Интегральное исчисление
  • Комплексный анализ
  • Элементы теории поля
  • Тензорное исчисление
  • Дифференциальные уравнения
  • Математическая логика
  • Теория вероятностей и
     математическая статистика





Узнать сколько стоит поставить брекеты можно на сайте like-dent.ru/ клиники "LIKE-DENT". . Отзывы о экофинанс.
     Примеры решения задач / Аналитическая геометрия на плоскости и в пространстве / Координаты точки на прямой и плоскости. Расстояние между двумя точками

решения других задач по данной теме


Какое соотношение существует между координатами точки, если она лежит:
а) на биссектрисе первого и третьего координатных углов;
б) на биссектрисе второго и четвертого координатных углов?


Решение.

а) Биссектриса первого и третьего координатных углов делит эти углы пополам и с положительным направлением оси Ox составляет угол в 45 градусов. Если из любой точки A(x, y) этой биссектрисы опустить перпендикуляр на ось Ox, то треугольник OAB будет равнобедренным прямоугольным треугольником, и потому его катеты OB и AB между собой равны (см. рисунок, а)). Так как катет OB есть абсцисса точки A, а катет AB - ее ордината (координатами точки могут быть не только числа, но и отрезки, измеренные единицей масштаба), то заключение состоит в том, что абсцисса и ордината любой точки этой биссектрисы между собой равны, причем это верно независимо от того, находится ли точка A в первом координатном углу или в третьем, так как в каждом из них абсцисса и ордината точки имеют один и тот же знак. Итак, для координат точек этой биссектрисы имеет место равенство x = y.

б) Для точек биссектрисы второго и четвертого координатных углов, аналогично рассуждая, придем к заключению, что абсцисса и ордината любой точки на этой биссектрисе также равны между собой по абсолютной величине, но противоположны по знаку, что следует из таблицы знаков абсциссы и ординаты во второй и четвертой четвертях:

   Четверти      II      IV   
x-+
y+-

Таким образом, для координат точек, лежащих на этой биссектрисе, выполняется равентство x = -y.


решения других задач по данной теме



© 2006-2024 ПМ298
info@pm298.ru
     Электронный справочник по математике: математические формулы по алгебре и геометрии, высшая математика, математика, математические формулы. Задачи с решениями, примеры и задачи по математике, бесплатные решения задач, симметрия , корни , медиана , функция

     Примеры решения задач: какое соотношение существует между координатами точки, если она лежит: а) на биссектрисе первого и третьего координатных углов; б) на биссектрисе второго и четвертого координатных углов?