Прикладная математика
                               Cправочник математических формул
                                          Примеры и задачи с решениями

Алфавитный указатель  а б в г д е ж з и к л м н о п р с т у ф х ц ч ш щ э ю я  

  • Математические формулы

  • Примеры решения задач

  • Некоторые постоянные
  • Элементарная геометрия
  • Геометрические преобразования
  • Начала анализа и алгебры
  • Уравнения и неравенства
  • Аналитическая геометрия
  • Высшая алгебра
  • Дифференциальное исчисление
  • Дифференциальная геометрия
  • Интегральное исчисление
  • Комплексный анализ
  • Элементы теории поля
  • Тензорное исчисление
  • Дифференциальные уравнения
  • Математическая логика
  • Теория вероятностей и
     математическая статистика





     Примеры решения задач / Аналитическая геометрия на плоскости и в пространстве / Векторная алгебра / 1 2 3 4 5 6 7 8 9 10 11 12

решения некоторых задач

19. Векторно-скалярное произведение трех векторов , и или смешанное их произведение вычисляется по формуле

     (31)

Абсолютная величина векторно-скалярного произведения равна объему параллелепипеда, построенного на векторах , и . Объем пирамиды, построенной на векторах , и , получим по формуле

     (32)

причем знак перед определителем должен быть выбран так, чтобы объем V был положительным (предполагается, что векторы , и не лежат в одной плоскости).

20. Три вектора , и называются компланарными, если они лежат в одной плоскости или параллельны одной и той же плоскости. Для того, чтобы три вектора были компланарны, необходимо и достаточно, чтобы их смешанное произведение было равно нулю.


решения некоторых задач


-1-2-3-4-5-6-7-8-9-10-11-12-



© 2006-2024 ПМ298
info@pm298.ru
     Электронный справочник по математике: математические формулы по алгебре и геометрии, высшая математика, математика, математические формулы. Задачи с решениями, примеры и задачи по математике, бесплатные решения задач, множества , степени , многочлены , прогрессия

     Векторно-скалярное произведение трех векторов, смешанное произведение трех векторов, компланарные вектора.