Прикладная математика
                               Cправочник математических формул
                                          Примеры и задачи с решениями

Алфавитный указатель  а б в г д е ж з и к л м н о п р с т у ф х ц ч ш щ э ю я  

  • Математические формулы

  • Примеры решения задач

  • Некоторые постоянные
  • Элементарная геометрия
  • Геометрические преобразования
  • Начала анализа и алгебры
  • Уравнения и неравенства
  • Аналитическая геометрия
  • Высшая алгебра
  • Дифференциальное исчисление
  • Дифференциальная геометрия
  • Интегральное исчисление
  • Комплексный анализ
  • Элементы теории поля
  • Тензорное исчисление
  • Дифференциальные уравнения
  • Математическая логика
  • Теория вероятностей и
     математическая статистика





     Примеры решения задач / Введение в анализ / Комплексные числа

решения других задач по данной теме


Выполнить указанные операции:   а) (2 - i)(2 + i)2 - (3 - 2i) + 7;   б) (1 + i)4;   в) .


Решение.

С комплексными числами, записанными в алгебраической форме, операции сложения, вычитания и умножения можно производить так же, как с действительными биномами. При этом пользуемся тем, что i2 = -1, i3 = i2 i = -i, i4 = i3 i = -i2 = 1, и т. д.

а) Имеем

(2 - i)(2 + i)2 = - (3 - 2i) + 7 = (2 - i)(2 + i)2 + 4 + 2i =

= (2 + i)((2 - i)(2 + i) + 2) = (2 + i)(4 + 1 + 2) = 14 + 7i.

б) Согласно формуле бинома Ньютона,

(1 + i)4 = 1 + 4i + 6i2 + 4i3 + i4 = 1 + 4i - 6 - 4i + 1 = -4.

в) .


решения других задач по данной теме



© 2006-2024 ПМ298
info@pm298.ru
     Электронный справочник по математике: математические формулы по алгебре и геометрии, высшая математика, математика, математические формулы. Задачи с решениями, примеры и задачи по математике, бесплатные решения задач, определители , плоскость , миноры , векторы

     Примеры решения задач: комплексные числа.