Прикладная математика
                               Cправочник математических формул
                                          Примеры и задачи с решениями

Алфавитный указатель  а б в г д е ж з и к л м н о п р с т у ф х ц ч ш щ э ю я  

  • Математические формулы

  • Примеры решения задач

  • Некоторые постоянные
  • Элементарная геометрия
  • Геометрические преобразования
  • Начала анализа и алгебры
  • Уравнения и неравенства
  • Аналитическая геометрия
  • Высшая алгебра
  • Дифференциальное исчисление
  • Дифференциальная геометрия
  • Интегральное исчисление
  • Комплексный анализ
  • Элементы теории поля
  • Тензорное исчисление
  • Дифференциальные уравнения
  • Математическая логика
  • Теория вероятностей и
     математическая статистика





     Примеры решения задач / Аналитическая геометрия на плоскости и в пространстве / Полярная система координат. Переход от полярных координат к декартовым и обратно. Построение кривой, определяемой уравнением в полярных координатах / 1 2

решения некоторых задач

Если же известны прямоугольные координаты x и y точки, ее полярные координаты определяются по формулам

     (2)

     (3)

Как видно из (2), у корня в формуле для определения r стоят два знака - плюс и минус, что соответствует обобщенной системе полярных координат, а потому и в формулах для определения и перед корнем стоят два знака. Два знака в формуле для определения r появились потому, что r находится из выражения r2 = x2 + y2. Если за r оставляется право быть только величиной положительной или нулем, то . Если же r, как это имеет место в обобщенной системе полярных координат, может быть и отрицательной величиной, то из r2 = x2 + y2 следует, что .

В заключение укажем, как вести вычисления по формулам (2), чтобы по известным прямоугольным координатам точки найти ее полярные координаты. Прежде всего следует определить r, выбрав под корнем любой знак, затем вычислить и , сохранив перед корнем в формулах (2) уже выбранный знак, и по знакам и установить четверть, в которой находится полярный угол . Само вычисление угла по таблицам тригонометрических функций следует вести по формуле (3).

Укажем также, как следует в полярной системе координат построить точку M по ее полярным координатам r и . По заданному полярному углу строим ось, проходящую через полюс под углом к полярной оси, причем положительное направление построенной оси должно совпадать с тем направлением, которое бы имела полярная ось, если бы ее повернули против часовой стрелки на угол . На этой оси откладываем отрезок длиной |r| от полюса O в положительном направлении построенной оси, если r > 0, и в отрицательном - если r < 0.


решения некоторых задач


-1-2-



© 2006-2024 ПМ298
info@pm298.ru
     Электронный справочник по математике: математические формулы по алгебре и геометрии, высшая математика, математика, математические формулы. Задачи с решениями, примеры и задачи по математике, бесплатные решения задач, вектор , куб , матан , мощность

     Полярная система координат, переход от полярных координат к декартовым и обратно, построение кривой, определяемой уравнением в полярных координатах.