Примеры решения задач / Аналитическая геометрия на плоскости и в пространстве / Полярная система координат. Переход от полярных координат к декартовым и обратно. Построение кривой, определяемой уравнением в полярных координатах / 1 2
решения некоторых задач
Полярная система координат. Переход от полярных координат к декартовым и обратно. Построение кривой, определяемой уравнением в полярных координатах
В полярной системе координат основными постоянными элементами, по отношению к которым определяется положение точки на плоскости, является точка O - полюс и ось OP, которая называется полярной осью.
Если M - произвольная точка плоскости, не совпадающая с полюсом O, то ее положение на плоскости вполне определено заданием двух чисел: r - ее расстояния от полюса, выраженного в единицах масштаба, и - угла, на который следует повернуть полярную ось против часовой стрелки, чтобы она совпала с лучом OM. Числа r и называются полярными координатами точки M. Из них первой координатой считается r, а второй . Координата r называется полярным радиусом точки M (иногда радиус-вектором точки M), а координата - ее полярным углом (полярный угол измеряется в радианах). Полярные координаты записываются в скобках справа от ее обозначения, причем на первом месте в скобках записывается координата r, а на втором - координата , например, . Полярный угол считается положительным, если он отсчитывается от полярной оси против часовой стрелки, и отрицательным, если он отсчитывается от полярной оси по часовой стрелке.
В определенной таким образом полярной системе координат полярный радиус r - всегда величина положительная или равная нулю (), так как под r понимается расстояние от полюса O до точки M, а расстояние, как и всякая длина, не может быть отрицательным.
Однако на практике удобнее пользоваться такой системой полярных координат, в которой полярный радиус r может принимать и отрицательные значения. Система полярных координат, в которой полярный радиус r может принимать любые значения (положительные, отрицательные и равные нулю), называется обобщенной системой полярных координат. Этой системой мы и будем пользоваться.
Если точка M имеет координаты +r и , то она имеет также и координаты -r и , так как угол характеризует направление полярного радиуса, прямо противоположное тому, которое соответствует углу .
Отметим, что какой бы из двух систем полярных координат мы не использовали, всегда паре чисел r и соответствует на плоскости единственная точка.
Если полюс полярной системы координат находится в начале прямоугольной системы координат, а положительная полуось Ox совпадает с полярной осью, ось же Oy перпендикулярна оси Ox и направлена так, что ей соответствует полярный угол , то по известным полярным координатам точки ее прямоугольные координаты вычисляются из формул
(1)
решения некоторых задач
-1-2-
|
|