Прикладная математика
                               Cправочник математических формул
                                          Примеры и задачи с решениями

Алфавитный указатель  а б в г д е ж з и к л м н о п р с т у ф х ц ч ш щ э ю я  

  • Математические формулы

  • Примеры решения задач

  • Некоторые постоянные
  • Элементарная геометрия
  • Геометрические преобразования
  • Начала анализа и алгебры
  • Уравнения и неравенства
  • Аналитическая геометрия
  • Высшая алгебра
  • Дифференциальное исчисление
  • Дифференциальная геометрия
  • Интегральное исчисление
  • Комплексный анализ
  • Элементы теории поля
  • Тензорное исчисление
  • Дифференциальные уравнения
  • Математическая логика
  • Теория вероятностей и
     математическая статистика





     Примеры решения задач / Аналитическая геометрия на плоскости и в пространстве

решения других задач по данной теме


Найти уравнение плоскости, проходящей через точки M1(1, 2, -1); M2(-1, 0 , 4); M3(-2, -1, 1).


Решение.

На основании уравнения (26) можно уравнение искомой плоскости написать в виде

Вычисляя этот определитель, получим

-4(x - 1) - 15(y - 2) + 6(z + 1) +

+ 15(x - 1) + 4(y - 2) - 6(z + 1) = 0.

Раскрывая скобки, делая приведение подобных членов и сокращая на 11, получим окончательно x - y + 1 = 0. Это уравнение определяет плоскость, параллельную оси Oz.


решения других задач по данной теме



© 2006-2024 ПМ298
info@pm298.ru
     Электронный справочник по математике: математические формулы по алгебре и геометрии, высшая математика, математика, математические формулы. Задачи с решениями, примеры и задачи по математике, бесплатные решения задач, лемниската , параллелограмм , определители , асимптота

     Примеры решения задач: найти уравнение плоскости, проходящей через точки M1(1, 2, -1); M2(-1, 0 , 4); M3(-2, -1, 1).