Прикладная математика
                               Cправочник математических формул
                                          Примеры и задачи с решениями

Алфавитный указатель  а б в г д е ж з и к л м н о п р с т у ф х ц ч ш щ э ю я  

  • Математические формулы

  • Примеры решения задач

  • Некоторые постоянные
  • Элементарная геометрия
  • Геометрические преобразования
  • Начала анализа и алгебры
  • Уравнения и неравенства
  • Аналитическая геометрия
  • Высшая алгебра
  • Дифференциальное исчисление
  • Дифференциальная геометрия
  • Интегральное исчисление
  • Комплексный анализ
  • Элементы теории поля
  • Тензорное исчисление
  • Дифференциальные уравнения
  • Математическая логика
  • Теория вероятностей и
     математическая статистика





     Примеры решения задач / Аналитическая геометрия на плоскости и в пространстве / Полярная система координат. Переход от полярных координат к декартовым и обратно. Построение кривой, определяемой уравнением в полярных координатах

решения других задач по данной теме


Составить уравнение прямой линии в полярных координатах.


Решение.

Поместим полюс полярной системы координат в начало прямоугольной системы координат, полярную ось совместим с положительной полуосью абсцисс (см. рисунок).

Возьмем уравнение прямой в нормальном виде

Формулы перехода имеют вид

     (1)

Подставив в это уравнение значения x и y из формулы (1), получим , или , откуда , и окончательно .

В этом уравнении постоянными величинами являются p и , величины же r и - переменные: это текущие полярные координаты точки на прямой (последняя формула может быть получена также из чертежа).


решения других задач по данной теме



© 2006-2024 ПМ298
info@pm298.ru
     Электронный справочник по математике: математические формулы по алгебре и геометрии, высшая математика, математика, математические формулы. Задачи с решениями, примеры и задачи по математике, бесплатные решения задач, степень , строфоида , астроида , планиметрия

     Примеры решения задач: составить уравнение прямой линии в полярных координатах.