Прикладная математика
                               Cправочник математических формул
                                          Примеры и задачи с решениями

Алфавитный указатель  а б в г д е ж з и к л м н о п р с т у ф х ц ч ш щ э ю я  

  • Математические формулы

  • Примеры решения задач

  • Некоторые постоянные
  • Элементарная геометрия
  • Геометрические преобразования
  • Начала анализа и алгебры
  • Уравнения и неравенства
  • Аналитическая геометрия
  • Высшая алгебра
  • Дифференциальное исчисление
  • Дифференциальная геометрия
  • Интегральное исчисление
  • Комплексный анализ
  • Элементы теории поля
  • Тензорное исчисление
  • Дифференциальные уравнения
  • Математическая логика
  • Теория вероятностей и
     математическая статистика





мультиаккаунт браузер
     Примеры решения задач / Введение в анализ / Элементы теории множеств

решения других задач по данной теме


Определить множества A U B, AB, A\B, B\A, A Δ B, если:
              а) A = {x: 0 < x < 2}, B = {x: 1 ≤ x ≤ 3};
              б) A = {x: x2 - 3x < 0}, B = {x: x2 - 4x + 3 ≥ 0};
              в) A = {x: |x - 1| < 2}, B = {x: |x - 1| + |x - 2| < 3}.


Решение.

Пользуясь определениями объединения, пересечения, разности и симметрической разности множеств, находим:

а)
              

б) Поскольку x2 - 3x < 0 для 0 < x < 3, то A = {x: 0 < x < 3}. Неравенство x2 - 4x + 3 ≥ 0 справедливо для -∞ < x ≤ 1 и 3 ≤ x < +∞. Обозначим D = {x: -∞ < x ≤ 1}, E = {x: 3 ≤ x < +∞}, тогда B = D U E. Используя свойства операций над множествами, находим:


          
          
          
          

в) Запишем явное выражение для множества

A = {x: -2 < x - 1 < 2} = {x: -1 < x < 3}.

Затем, решая неравенство |x - 1| + |x - 2| < 3, находим явное выражение для множества B = {x: 0 < x < 3}. Тогда


          
          
          
          


решения других задач по данной теме



© 2006-2024 ПМ298
info@pm298.ru
     Электронный справочник по математике: математические формулы по алгебре и геометрии, высшая математика, математика, математические формулы. Задачи с решениями, примеры и задачи по математике, бесплатные решения задач, косинус , уравнения , ряды , дифференциал

     Примеры решения задач: определить множества A U B, A ∩ B, A\B, B\A, A Δ B, если...