Прикладная математика
                               Cправочник математических формул
                                          Примеры и задачи с решениями

Алфавитный указатель  а б в г д е ж з и к л м н о п р с т у ф х ц ч ш щ э ю я  

  • Математические формулы

  • Примеры решения задач

  • Некоторые постоянные
  • Элементарная геометрия
  • Геометрические преобразования
  • Начала анализа и алгебры
  • Уравнения и неравенства
  • Аналитическая геометрия
  • Высшая алгебра
  • Дифференциальное исчисление
  • Дифференциальная геометрия
  • Интегральное исчисление
  • Комплексный анализ
  • Элементы теории поля
  • Тензорное исчисление
  • Дифференциальные уравнения
  • Математическая логика
  • Теория вероятностей и
     математическая статистика





     Примеры решения задач / Введение в анализ / Действительные числа

решения других задач по данной теме


Доказать формулу бинома Ньютона , где (число сочетаний из n элементов по m), , причем полагают 0! = 1.


Решение.

При n = 1 имеем

Остается показать, что из предположения справедливости утверждения для n следует, что

В самом деле,

Используя соотношения

окончательно имеем


решения других задач по данной теме



© 2006-2025 ПМ298
info@pm298.ru
     Электронный справочник по математике: математические формулы по алгебре и геометрии, высшая математика, математика, математические формулы. Задачи с решениями, примеры и задачи по математике, бесплатные решения задач, парабола , векторы , пределы , пропорции

     Примеры решения задач: доказать формулу бинома Ньютона.