Прикладная математика
                               Cправочник математических формул
                                          Примеры и задачи с решениями

Алфавитный указатель  а б в г д е ж з и к л м н о п р с т у ф х ц ч ш щ э ю я  

  • Математические формулы

  • Примеры решения задач

  • Некоторые постоянные
  • Элементарная геометрия
  • Геометрические преобразования
  • Начала анализа и алгебры
  • Уравнения и неравенства
  • Аналитическая геометрия
  • Высшая алгебра
  • Дифференциальное исчисление
  • Дифференциальная геометрия
  • Интегральное исчисление
  • Комплексный анализ
  • Элементы теории поля
  • Тензорное исчисление
  • Дифференциальные уравнения
  • Математическая логика
  • Теория вероятностей и
     математическая статистика





     Примеры решения задач / Аналитическая геометрия на плоскости и в пространстве / Деление отрезка в заданном отношении. Координаты середины отрезка. Определение площади треугольника по известным координатам его вершин. Площадь многоугольника / 1 2

решения других задач по данной теме


В прямоугольном треугольнике найти биссектрису прямого угла, если гипотенуза треугольника равна c, а один из острых углов равен α.


Решение.

В ΔABC (см. рисунок) имеем AC = c sin α, BC = c cos α, BL = x, AL = c - x, l - биссектриса угла C. Так как . Теперь по теореме синусов получаем . Окончательно получим

Итак, искомая биссектриса прямого угла равна .


решения других задач по данной теме



© 2006-2024 ПМ298
info@pm298.ru
     Электронный справочник по математике: математические формулы по алгебре и геометрии, высшая математика, математика, математические формулы. Задачи с решениями, примеры и задачи по математике, бесплатные решения задач, плоскость , асимптота , парабола , тензоры

     Примеры решения задач: в прямоугольном треугольнике найти биссектрису прямого угла, если гипотенуза треугольника равна c, а один из острых углов равен a.