Прикладная математика
                               Cправочник математических формул
                                          Примеры и задачи с решениями

Алфавитный указатель  а б в г д е ж з и к л м н о п р с т у ф х ц ч ш щ э ю я  

  • Математические формулы

  • Примеры решения задач

  • Некоторые постоянные
  • Элементарная геометрия
  • Геометрические преобразования
  • Начала анализа и алгебры
  • Уравнения и неравенства
  • Аналитическая геометрия
  • Высшая алгебра
  • Дифференциальное исчисление
  • Дифференциальная геометрия
  • Интегральное исчисление
  • Комплексный анализ
  • Элементы теории поля
  • Тензорное исчисление
  • Дифференциальные уравнения
  • Математическая логика
  • Теория вероятностей и
     математическая статистика





     Примеры решения задач / Интегральное исчисление / Неопределенные интегралы

решения других задач по данной теме


Применяя метод Остроградского вычислить интеграл .


Решение.

Представим исходный интеграл в виде

Дифференцируя и приводя к общему знаменателю, получаем тождество

1 ≡ (x4 - 1)(7Ax6 + 6Bx5 + 5Cx4 + 4Dx3 + 3Ex2 + 2Fx + G) –

- 8 x3(Ax7 + Bx6 + Cx5 + Dx4 + Ex3 + Fx2 + Gx + H) +

+ (x8 - 2x + 1)( Kx3 + Lx2 + Mx + N).

Сравнивая коэффициенты при одинаковых степенях x в обеих частях равенства, имеем

Решая систему, получаем A = B = D = E = F = H = K = L = M = 0, C = 7/32, G = -11/32, N = 21/32. Таким образом,

Вычисляя последний интеграл, окончательно получаем


решения других задач по данной теме



© 2006-2024 ПМ298
info@pm298.ru
     Электронный справочник по математике: математические формулы по алгебре и геометрии, высшая математика, математика, математические формулы. Задачи с решениями, примеры и задачи по математике, бесплатные решения задач, призма , функция , пирамида , куб

     Примеры решения задач: применяя метод Остроградского вычислить интеграл .