Прикладная математика
                               Cправочник математических формул
                                          Примеры и задачи с решениями

Алфавитный указатель  а б в г д е ж з и к л м н о п р с т у ф х ц ч ш щ э ю я  

  • Математические формулы

  • Примеры решения задач

  • Некоторые постоянные
  • Элементарная геометрия
  • Геометрические преобразования
  • Начала анализа и алгебры
  • Уравнения и неравенства
  • Аналитическая геометрия
  • Высшая алгебра
  • Дифференциальное исчисление
  • Дифференциальная геометрия
  • Интегральное исчисление
  • Комплексный анализ
  • Элементы теории поля
  • Тензорное исчисление
  • Дифференциальные уравнения
  • Математическая логика
  • Теория вероятностей и
     математическая статистика





     Примеры решения задач / Введение в анализ / Действительные числа

решения других задач по данной теме


Доказать неравенство Бернули (1 + x1)(1 + x2) ... (1 + xn) ≥ 1 + x1 + x2 + ... + xn, где x1, x2, ..., xn - числа одного и того же знака, бóльшие -1.


Решение.

При n = 1,2 неравенство очевидно. Пусть неравенство справедливо при n. Покажем справедливость его при n + 1. Имеем (при xi > -1)

Здесь использовано неравенство

справедливое при любых xi одного знака.


решения других задач по данной теме



© 2006-2025 ПМ298
info@pm298.ru
     Электронный справочник по математике: математические формулы по алгебре и геометрии, высшая математика, математика, математические формулы. Задачи с решениями, примеры и задачи по математике, бесплатные решения задач, эпициклоида , логарифмы , логарифм , гомотетия

     Примеры решения задач: доказать неравенство Бернули.