Прикладная математика
                               Cправочник математических формул
                                          Примеры и задачи с решениями

Алфавитный указатель  а б в г д е ж з и к л м н о п р с т у ф х ц ч ш щ э ю я  

  • Математические формулы

  • Примеры решения задач

  • Некоторые постоянные
  • Элементарная геометрия
  • Геометрические преобразования
  • Начала анализа и алгебры
  • Уравнения и неравенства
  • Аналитическая геометрия
  • Высшая алгебра
  • Дифференциальное исчисление
  • Дифференциальная геометрия
  • Интегральное исчисление
  • Комплексный анализ
  • Элементы теории поля
  • Тензорное исчисление
  • Дифференциальные уравнения
  • Математическая логика
  • Теория вероятностей и
     математическая статистика





     Примеры решения задач / Аналитическая геометрия на плоскости и в пространстве / Деление отрезка в заданном отношении. Координаты середины отрезка. Определение площади треугольника по известным координатам его вершин. Площадь многоугольника

решения других задач по данной теме


Найти координаты конца B отрезка, если другой конец отрезка - точка A(-5, -7), а середина отрезка - C(-9, -12).


Решение.

В формулах

     (1)

координаты середины отрезка обозначены через x и y. По условию задачи x = -9; y = -12. Координаты одного конца отрезка точки A в этих формулах x1 = -5; y1 = -7. Координаты точки B (другого конца отрезка) - величины неизвестные, которые мы обозначим через x2 и y2. Тогда по формулам (1) для определения этих неизвестных получаем два уравнения:

Отсюда

-18 = -5 + x2 и x2 = -13,

-24 = -7 + y2 и y2 = -17.


решения других задач по данной теме



© 2006-2024 ПМ298
info@pm298.ru
     Электронный справочник по математике: математические формулы по алгебре и геометрии, высшая математика, математика, математические формулы. Задачи с решениями, примеры и задачи по математике, бесплатные решения задач, степень , строфоида , астроида , планиметрия

     Примеры решения задач: найти координаты конца B отрезка, если другой конец отрезка - точка A(-5, -7), а середина отрезка - C(-9, -12).