Прикладная математика
                               Cправочник математических формул
                                          Примеры и задачи с решениями

Алфавитный указатель  а б в г д е ж з и к л м н о п р с т у ф х ц ч ш щ э ю я  

  • Математические формулы

  • Примеры решения задач

  • Некоторые постоянные
  • Элементарная геометрия
  • Геометрические преобразования
  • Начала анализа и алгебры
  • Уравнения и неравенства
  • Аналитическая геометрия
  • Высшая алгебра
  • Дифференциальное исчисление
  • Дифференциальная геометрия
  • Интегральное исчисление
  • Комплексный анализ
  • Элементы теории поля
  • Тензорное исчисление
  • Дифференциальные уравнения
  • Математическая логика
  • Теория вероятностей и
     математическая статистика





     Примеры решения задач / Аналитическая геометрия на плоскости и в пространстве / Деление отрезка в заданном отношении. Координаты середины отрезка. Определение площади треугольника по известным координатам его вершин. Площадь многоугольника / 1 2

решения других задач по данной теме


б) уравнения, отмеченные (2), если подставить в них координаты точки F, запишутся в виде

или

xA + xС = -8;   yA + yС = 10.

в) Если же в уравнения, отмеченные (3), подставить координаты точки K, то эти уравнения запишутся так:

или

xB + xС = 2;   yB + yС = -8.

Итак, для определения шести неизвестных мы получили такие две системы уравнений:

   первая система уравнений      вторая система уравнений   

Складывая почленно уравнения первой системы, будем иметь

xA + xB + xA + xC + xB + xC = 8.

После приведения подобных членов и деления обеих частей уравнения на 2 получим

xA + xB + xC = 4.     (4)

Так как на основании третьего уравнения первой системы xB + xC = 2, то из (4) получаем xA + 2 = 4, а xA = 2; используя второе уравнение первой системы xA + xC = -8, получим xB - 8 = 4; xB = 12; на основании первого уравнения первой системы xA + xB = 14, и уравнение (4) примет вид: xC + 14 = 4, а xC = -10. Итак, xA = 2; xB = 12; xC = -10. Поступая так же, найдем из второй системы уравнений yA = 17; yB = -1; yC = -7. Вершины треугольника имеют такие координаты: A(2, 17); B(12, -1); C(-10, -7)


-1-2-


решения других задач по данной теме



© 2006-2024 ПМ298
info@pm298.ru
     Электронный справочник по математике: математические формулы по алгебре и геометрии, высшая математика, математика, математические формулы. Задачи с решениями, примеры и задачи по математике, бесплатные решения задач, множество , многочлены , прогрессия , степень

     Примеры решения задач: даны координаты середин сторон треугольника: E(7, 8); F(-4, 5); K(1, -4). Определить координаты вершин треугольника.