Прикладная математика
                               Cправочник математических формул
                                          Примеры и задачи с решениями

Алфавитный указатель  а б в г д е ж з и к л м н о п р с т у ф х ц ч ш щ э ю я  

  • Математические формулы

  • Примеры решения задач

  • Некоторые постоянные
  • Элементарная геометрия
  • Геометрические преобразования
  • Начала анализа и алгебры
  • Уравнения и неравенства
  • Аналитическая геометрия
  • Высшая алгебра
  • Дифференциальное исчисление
  • Дифференциальная геометрия
  • Интегральное исчисление
  • Комплексный анализ
  • Элементы теории поля
  • Тензорное исчисление
  • Дифференциальные уравнения
  • Математическая логика
  • Теория вероятностей и
     математическая статистика





     Примеры решения задач / Аналитическая геометрия на плоскости и в пространстве / Деление отрезка в заданном отношении. Координаты середины отрезка. Определение площади треугольника по известным координатам его вершин. Площадь многоугольника / 1 2

решения других задач по данной теме


Даны координаты середин сторон треугольника: E(7, 8); F(-4, 5); K(1, -4). Определить координаты вершин треугольника.


Решение.

пусть точки A, B и C - вершины треугольника, точка E - середина стороны AB, точка F - середина стороны AC, а K - середина стороны BC. Требуется найти координаты точек A, B и C.

Обозначим через xA и yA - координаты вершины A, xB и yB - координаты вершины B, xC и yC - координаты вершины C.

По формулам

имеем

     (1)

     (2)

     (3)

Подставляя в эти формулы координаты точек E, F и K, мы для определения неизвестных получим следующие уравнения:

а) Уравнения, отмеченные (1), после подстановки в них координат точки E запишутся так:

или

xA + xB = 14;   yA + yB = 16.


-1-2-


решения других задач по данной теме



© 2006-2024 ПМ298
info@pm298.ru
     Электронный справочник по математике: математические формулы по алгебре и геометрии, высшая математика, математика, математические формулы. Задачи с решениями, примеры и задачи по математике, бесплатные решения задач, степени , множество , многочлен , прогрессии

     Примеры решения задач: даны координаты середин сторон треугольника: E(7, 8); F(-4, 5); K(1, -4). Определить координаты вершин треугольника.