Прикладная математика
                               Cправочник математических формул
                                          Примеры и задачи с решениями

Алфавитный указатель  а б в г д е ж з и к л м н о п р с т у ф х ц ч ш щ э ю я  

  • Математические формулы

  • Примеры решения задач

  • Некоторые постоянные
  • Элементарная геометрия
  • Геометрические преобразования
  • Начала анализа и алгебры
  • Уравнения и неравенства
  • Аналитическая геометрия
  • Высшая алгебра
  • Дифференциальное исчисление
  • Дифференциальная геометрия
  • Интегральное исчисление
  • Комплексный анализ
  • Элементы теории поля
  • Тензорное исчисление
  • Дифференциальные уравнения
  • Математическая логика
  • Теория вероятностей и
     математическая статистика





     Примеры решения задач / Аналитическая геометрия на плоскости и в пространстве / Координаты точки на прямой и плоскости. Расстояние между двумя точками

решения некоторых задач

Координаты точки на прямой и плоскости. Расстояние между двумя точками


Расстояние d между точками A(x1) и B(x2) на оси:

Величина AB (алгебраическая) направленного отрезка на оси:

AB = x2 - x1.

Если известны координаты концов отрезка прямой, то тем самым положение отрезка на плоскости вполне определено. Координаты точки записываются в скобках рядом с названием точки, причем всегда на первом месте в прямоугольной системе координат записывается абсцисса точки, а на втором - ее ордината. Например, если x1 - абсцисса точки A, а y1 - ее ордината, то это записывается так: A(x1, y1).

У точки, лежащей на оси абсцисс, ордината равна нулю; у точки, лежащей на оси ординат, абсцисса равна нулю. Обе координаты начала координат равны нулю.

Расстояние d между точками A(x1, y1) и B(x2, y2) плоскости определяется по формуле:

Проекции на оси координат направленного отрезка, или вектора на плоскости с началом A(x1, y1) и концом B(x2, y2):

Тангенс угла между отрезком и положительным направлением оси Ox определяется по формуле (этот угол отсчитывается от оси Ox против часовой стрелки):

Определенный по этой формуле является угловым коэффициентом прямой.


решения некоторых задач



© 2006-2024 ПМ298
info@pm298.ru
     Электронный справочник по математике: математические формулы по алгебре и геометрии, высшая математика, математика, математические формулы. Задачи с решениями, примеры и задачи по математике, бесплатные решения задач, пирамида , вектор , квадрат , шар

     Координаты точки на прямой и плоскости, расстояние между двумя точками.