Примеры решения задач / Тождественные преобразования алгебраических выражений / 1 2 3 4 5 6 7 8 9 10
решения некоторых задач
Понятие корня
Алгебраические выражения, содержащие операцию извлечения корня, называются иррациональными.
Корнем n-й степени из числа a называется такое число b, n-я степень которого равна a (n ≥ 2). Обозначается , где a - подкоренное выражение (или число), n - показатель корня (n ≥ 2; n ϵ N).
По определению , если bn = a, или .
Основные свойства корня
Если корни рассматривать в множестве действительных чисел, то: а) корень четной степени из положительного числа имеет два значения, равные по абсолютной величине и противоположные по знаку; б) корень четной степени из отрицательного числа в множестве действительных чисел не существует; в) корень нечетной степени из положительного числа имеет только одно действительное значение, которое положительно; г) корень нечетной степени из отрицательного числа имеет только одно действительное значение, которое отрицательно; д) корень любой натуральной степени из нуля равен нулю.
Действие, посредством которого отыскивается корень n-й степени из данного числа a, называется извлечением корня n-й степени из числа a, а результат извлечения корня в виде называют радикалом.
Таким образом, множество действительных чисел не замкнуто относительно извлечения корня четной степени, а результат этого действия (корень) не однозначен.
Заметим, что множество действительных чисел замкнуто относительно извлечения корня нечетной степени, а результат этого действия однозначен.
Арифметический корень и его свойства
Арифметическим значением корня или арифметическим корнем степени n (n ≥ 2; n ϵ N) из положительного числа a называется положительное значение корня. Корень из нуля, равный нулю, также будет называться арифметическим корнем, т. е. есть арифметический корень, где a ≥ 0, b ≥ 0 и bn = a.
Множество неотрицательных действительных чисел замкнуто относительно извлечения арифметического корня, а результат этого действия однозначен. Это значит, что для любого неотрицательного числа a и натурального числа n (n > 1) всегда найдется, и притом только одно, такое неотрицательное число b, что bn = a.
решения некоторых задач
-1-2-3-4-5-6-7-8-9-10-
|