Прикладная математика
                               Cправочник математических формул
                                          Примеры и задачи с решениями

Алфавитный указатель  а б в г д е ж з и к л м н о п р с т у ф х ц ч ш щ э ю я  

  • Математические формулы

  • Примеры решения задач

  • Некоторые постоянные
  • Элементарная геометрия
  • Геометрические преобразования
  • Начала анализа и алгебры
  • Уравнения и неравенства
  • Аналитическая геометрия
  • Высшая алгебра
  • Дифференциальное исчисление
  • Дифференциальная геометрия
  • Интегральное исчисление
  • Комплексный анализ
  • Элементы теории поля
  • Тензорное исчисление
  • Дифференциальные уравнения
  • Математическая логика
  • Теория вероятностей и
     математическая статистика





     Примеры решения задач / Аналитическая геометрия на плоскости и в пространстве / Составление уравнения прямой по ее геометрическим свойствам / 1 2

решения других задач по данной теме


Из алгебры известно, что возведение обеих частей уравнения в квадрат может привести к уравнению, которое не равносильно (не эквивалентно) исходному. Это значит, что уравнение, полученное от возведения в квадрат обеих частей исходного уравнения, может иметь решения, не удовлетворяющие исходному уравнению, т. е. иметь так называемые "посторонние" корни. Поэтому всегда в тех случаях, когда обе части уравнения приходится возводить в квадрат, следует ставить вопрос об эквивалентности полученного и исходного уравнений.

В интересующем нас случае вопрос ставится так: не содержит ли линия (2) точек, которых нет на линии (1), т. е. таких, координаты которых не удовлетворяют уравнению (1) и таким образом не удовлетворяют исходному условию AB = AC.

Чтобы убедиться в том, что линия (2) не содержит точек, которых нет в линии (1), надо показать, что уравнение (2) может быть преобразовано в уравнение (1).

Произведя в обратном порядке операции, с помощью которых было получено уравнение (2), мы придем к уравнению (x - x1)2 + y2 = (x - x2)2 + y2, откуда следует, что

     (3)

т. е. что ; отсюда видно, что или AB - AC = 0, или AB + AC = 0.

Но AB > 0 и AC > 0, а следовательно, , так как сумма двух положительных величин не может быть равна нулю, а потому остается только одно равенство AB - AC = 0, т. е. AB = AC, и знак минус перед правой частью уравнения (3) должен быть отброшен. Поскольку из уравнения (1) получается уравнение (2) и обратно - из уравнения (2) следует уравнение (1), то эти уравнения равносильны (эквивалентны). Таким образом, поставленный вопрос решен: линия (2) не содержит таких точек, которых нет на линии (1).


-1-2-


решения других задач по данной теме



© 2006-2024 ПМ298
info@pm298.ru
     Электронный справочник по математике: математические формулы по алгебре и геометрии, высшая математика, математика, математические формулы. Задачи с решениями, примеры и задачи по математике, бесплатные решения задач, отображение , косинус , многоугольник , предел

     Примеры решения задач: найти геометрическое место точек, равноудаленных от двух данных точек, решение задачи.