Прикладная математика
                               Cправочник математических формул
                                          Примеры и задачи с решениями

Алфавитный указатель  а б в г д е ж з и к л м н о п р с т у ф х ц ч ш щ э ю я  

  • Математические формулы

  • Примеры решения задач

  • Некоторые постоянные
  • Элементарная геометрия
  • Геометрические преобразования
  • Начала анализа и алгебры
  • Уравнения и неравенства
  • Аналитическая геометрия
  • Высшая алгебра
  • Дифференциальное исчисление
  • Дифференциальная геометрия
  • Интегральное исчисление
  • Комплексный анализ
  • Элементы теории поля
  • Тензорное исчисление
  • Дифференциальные уравнения
  • Математическая логика
  • Теория вероятностей и
     математическая статистика





     Примеры решения задач / Интегральное исчисление / Определенные интегралы / 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

решения некоторых задач

     Основные свойства интеграла. Установим ряд важных свойств определенного интеграла. Большая часть этих свойств присуща интегралам от любых интегрируемых функций, но мы будем формулировать их для функций непрерывных.

     Теорема 1. Если f(x) и g(x) - две непрерывные функции, заданные на промежутке [a, b], то

т. е. интеграл суммы равен сумме интегралов слагаемых.

     В самом деле, составляя интегральную сумму для функции f(x) + g(x), очевидно, будем иметь

после чего остается перейти к пределу при λ → 0.

     Аналогично доказывается

     Теорема 2. Если f(x) - непрерывная функция, а c - постоянное число, то

т. е. постоянный множитель можно выносить за знак интеграла.

     Теорема 3. Пусть f(x) непрерывна на промежутке [a, b]. Если этот промежуток точкой c разложен на части [a, c] и [c, b], то интеграл по всему промежутку оказывается равным сумме интегралов по его частям, т. е.

     В самом деле, будем при раздроблении промежутка [a, b] на части включать c в число точек деления. Если c = xm, то

     Каждая из написанных здесь трех сумм является интегральной суммой соответственно для промежутков [a, b], [a, c] и [c, b]. Остается перейти к пределу при λ → 0.


решения некоторых задач


-1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22-23-24-25-26-27-



© 2006- 2024  ПМ298
info@pm298.ru
     Электронный справочник по математике: математические формулы по алгебре и геометрии, высшая математика, математика, математические формулы. Задачи с решениями, примеры и задачи по математике, бесплатные решения задач, векторы , внутренняя мера Лебега

     Основные свойства определенного интеграла.