Примеры решения задач / Интегральное исчисление / Определенные интегралы / 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
решения некоторых задач
Если вспомним, что при совпадении пределов интегрирования интеграл обращается в нуль, то сразу увидим, что
 
Отсюда и из (19) вытекает, что
C0 = - F(a),
и потому
 
В частности, при x = b находим:
  (20)
Эта формула (называемая формулой Ньютона-Лейбница) сводит вопрос о вычислении определенного интеграла любой непрерывной функции к нахождению для нее первообразной функции. По существу этим перекинут мост между двумя частями математического анализа - дифференциальным исчислением (к которому, собственно, надо отнести и понятие первообразной функции) и интегральным исчислением, которое изучает в основном пределы интегральных сумм. К концу XVII в. оба эти исчисления были разработаны уже весьма обстоятельно, но то, что они связаны между собой, еще не было выяснено. Заслугой Ньютона и Лейбница является именно установление факта этой связи. Видим, что в основе ее лежит предложение, составляющее содержание теоремы, почему мы и назвали эту теорему основной теоремой математического анализа.
Ввиду чрезвычайной важности установленного результата придадим ему форму следующего правила:
Правило. Для вычисления определенного интеграла от непрерывной функции надо найти для нее первообразную функцию и составить разность значений этой последней функции при верхнем и нижнем пределах интегрирования.
При выводе этого правила и выражающей его формулы (20) мы считали, что a < b. Однако это не существенно. Действительно, при a = b формула (20) очевидна, т. к. обе ее части равны нулю. Случай же a > b приводится к случаю a < b переменой знака обеих частей формулы (20).
Формулу (20) можно переписать иначе, если ввести очень удобное обозначение разности F(b) - F(a) символом

При этом обозначении формула (20) принимает вид
  (21)
Если заметить, что в качестве F(x) может быть использована любая первообразная F(x) + C, то формулу Ньютона-Лейбница можно будет записать и так:
  
Это, пожалуй, наиболее выразительная ее запись.
решения некоторых задач
-1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22-23-24-25-26-27-
|