Прикладная математика
                               Cправочник математических формул
                                          Примеры и задачи с решениями

Алфавитный указатель  а б в г д е ж з и к л м н о п р с т у ф х ц ч ш щ э ю я  

  • Математические формулы

  • Примеры решения задач

  • Некоторые постоянные
  • Элементарная геометрия
  • Геометрические преобразования
  • Начала анализа и алгебры
  • Уравнения и неравенства
  • Аналитическая геометрия
  • Высшая алгебра
  • Дифференциальное исчисление
  • Дифференциальная геометрия
  • Интегральное исчисление
  • Комплексный анализ
  • Элементы теории поля
  • Тензорное исчисление
  • Дифференциальные уравнения
  • Математическая логика
  • Теория вероятностей и
     математическая статистика





     Примеры решения задач / Интегральное исчисление / Несобственные интегралы / 1 2 3 4

решения некоторых задач

Несобственные интегралы

     При определении интеграла

     (1)

предполагалось, что: 1) отрезок интегрирования [a, b] конечен и 2) подынтегральная функция f(x) на этом отрезке непрерывна. Такой определенный интеграл назвается интегралом в "собственном смысле", или собственным интегралом. В том же случае, когда отрезок интегрирования бесконечен или конечен, но подынтегральная функция на этом отрезке терпит разрыв, то (1) называется интегралом в "несобственном смысле" или несобственным интегралом.

     Несобственный интеграл с бесконечным пределом интегрирования

     Пусть функция f(x) непрерывна при ax < +∞. Тогда по определению полагают

     (2)

Если предел (2) существует, то несобственный интеграл с бесконечным пределом интегрирования, стоящий в левой части равенства (2), назвается сходящимся и его значение определяется формулой (2); в противном случае равенство (2) теряет смысл, несобственный интеграл, стоящий слева, называется расходящимся и ему не приписывается никакого числового значения.

     Интеграл определяется аналогично:

     (3)

а интеграл

     (4)

при этом

     (5)

где a - любое число.


решения некоторых задач


-1-2-3-4-



© 2006- 2024  ПМ298
info@pm298.ru
     Электронный справочник по математике: математические формулы по алгебре и геометрии, высшая математика, математика, математические формулы. Задачи с решениями, примеры и задачи по математике, бесплатные решения задач, многочлен , орт

     Несобственные интегралы.