Прикладная математика
                               Cправочник математических формул
                                          Примеры и задачи с решениями

Алфавитный указатель  а б в г д е ж з и к л м н о п р с т у ф х ц ч ш щ э ю я  

  • Математические формулы

  • Примеры решения задач

  • Некоторые постоянные
  • Элементарная геометрия
  • Геометрические преобразования
  • Начала анализа и алгебры
  • Уравнения и неравенства
  • Аналитическая геометрия
  • Высшая алгебра
  • Дифференциальное исчисление
  • Дифференциальная геометрия
  • Интегральное исчисление
  • Комплексный анализ
  • Элементы теории поля
  • Тензорное исчисление
  • Дифференциальные уравнения
  • Математическая логика
  • Теория вероятностей и
     математическая статистика





Компьютерный ремонт мастер: компьютерныи мастер Gor Master. . Освоив специальность переработка нефти и газа, вы сможете работать на промышленных предприятиях.
     Формулы / Неевклидовы геометрии / Возникновение неевклидовой геометрии Лобачевского / 1 2 3 4 5 6 7 8 9 10 11


По теореме 1, сумма углов каждого из треугольников ABC1 и AC1C не больше 180°; если хотя бы у одного из них сумма углов была бы меньше 180°, то и сумма углов прямоугольного треугольника ABC (получающаяся, если из суммы всех углов треугольников ABC1 и ACC1 вычесть 180°) была бы меньше 180°, что противоречит сделанному предположению. Поэтому сумма углов треугольника ABC1 также равна 180°. Отсюда, в точности так же как выше, заключаем, что в каждом из треугольников A1BC1 и A1AC1 сумма углов равна 180°.

     Теперь уже нетрудно доказать теорему 2. Пусть сумма углов некоторого треугольника ABC равна 180°. Опустив на его большую сторону высоту BD, разобъем его на два прямоугольных треугольника ABD и CBD (см. Рис. 9, а).

Сумма углов каждого из треугольников ABD, CBD также равна 180° (т. к. если бы сумма острых углов хотя бы одного из треугольников ABD и CBD была меньше 90°, то сумма углов треугольника ABC также была бы меньше 180°). По доказанному выше, отсюда следует, что сумма острых углов любого прямоугольного треугольника равна 90°. Но каждый треугольник A1B1C1 можно разбить на два прямоугольных треугольника высотой, опущенной на большую сторону (см. Рис. 9, б). Так как сумма острых углов каждого из этих треугольников (A1B1D1 и B1C1D1 на Рис. 9, б) равна 90°, то сумма углов треугольника A1B1C1 равна 180°, что и завершает доказательство теоремы.

     Теорема 3. Если сумма углов любого треугольника равна 180°, то справедлив V постулат.

     Пусть A - точка, лежащая вне прямой DD' (см. Рис. 10). Опустим из точки A перпендикуляр AC на прямую DD' и проведем через точку A прямую BB', перпендикулярную к AC. Ясно, что прямые BB' и DD' не пересекаются (иначе образовался бы треугольник с суммой углов, большей 180°).


-1-2-3-4-5-6-7-8-9-10-11-



© 2006- 2024  ПМ298
info@pm298.ru
     Электронный справочник по математике: математические формулы по алгебре и геометрии, высшая математика, математика, математические формулы. Задачи с решениями, примеры и задачи по математике, бесплатные решения задач, прогрессия , касательная плоскость к поверхности

     Теорема: если сумма углов любого треугольника равна 180 градусов, то справедлив пятый постулат.