Чрезвычайное расширение предмета математики привлекло в 19 в. усиленное внимание к вопросам ее "обоснования", т. е. критическому пересмотру ее исходных положений (аксиом), построению строгой системы определений и доказательств, а также критическому рассмотрению логических приемов, употребляемых при этих доказательствах. Стандарт требований к логической строгости, предъявляемых к практической работе математиков над развитием отдельных математических теорий, сложился только к концу 19 в. Глубокий и тщательный анализ требований к логической строгости доказательств, строения математических теорий, вопросов алгоритмической разрешимости и неразрешимости математических проблем составляет предмет математической логики.
В начале 19 в. происходит новое значительное расширение области приложений математического анализа. Если до этого времени основными отделами физики, требовавшими большого математического аппарата, оставались механика и оптика, то теперь к ним присоединяются электродинамика, теория магнетизма и термодинамика. Получают широкое развитие важнейшие разделы механики непрерывных сред. Быстро растут и математические запросы техники. В качестве основного аппарата новых областей механики и математической физики усиленно разрабатывается теория обыкновенных дифференциальных уравнений, дифференциальных уравнений с частичными производными и математической физики уравнений.
Теория дифференциальных уравнений послужила отправным пунктом исследований по топологии многообразий. Здесь получили свое начало "комбинаторные", "гомологические" и "гомотопические" методы алгебраической топологии. Другое направление в топологии возникло на почве теории множеств и функционального анализа и привело к систематическому построению теории общих топологических пространств.
Существенным дополнением к методам дифференциальных уравнений при изучении природы и решении технических задач являются методы теории вероятностей. Если в начале 19 в. главными потребителями вероятностных методов были теория артиллерийской стрельбы и теория ошибок, то в конце 19 и в начале 20 вв. теория вероятностей получает много новых применений благодаря созданию теории случайных процессов и развитию аппарата математической статистики.
Теория чисел, представлявшая собрание отдельных результатов и идей, с 19 в. развивалась в различных направлениях как стройная теория.
Центр тяжести алгебраических исследований переносится в новые области алгебры: теорию групп, полей, колец, общих алгебраических систем. На границе между алгеброй и геометрией возникает теория непрерывных групп, методы которой позднее проникают во все новые области математики и естествознания.
-1-2-3-
|