Прикладная математика
                               Cправочник математических формул
                                          Примеры и задачи с решениями

Алфавитный указатель  а б в г д е ж з и к л м н о п р с т у ф х ц ч ш щ э ю я  

  • Математические формулы

  • Примеры решения задач

  • Некоторые постоянные
  • Элементарная геометрия
  • Геометрические преобразования
  • Начала анализа и алгебры
  • Уравнения и неравенства
  • Аналитическая геометрия
  • Высшая алгебра
  • Дифференциальное исчисление
  • Дифференциальная геометрия
  • Интегральное исчисление
  • Комплексный анализ
  • Элементы теории поля
  • Тензорное исчисление
  • Дифференциальные уравнения
  • Математическая логика
  • Теория вероятностей и
     математическая статистика





Современная математика

     Все созданные в 17 и 18 вв. разделы математического анализа продолжали с большой интенсивностью развиваться в 19 и 20 вв. Чрезвычайно расширился за это время и круг их применения к задачам, выдвигаемым естествознанием и техникой. Однако помимо этого количественного роста с конца 18 и в начале 19 вв. в развитии математики наблюдается и ряд существенно новых черт.

     Накопленный в 17 и 18 вв. огромный фактический материал привел к необходимости углубленного логического анализа и объединения его с новых точек зрения. Связь математики с естествознанием, оставаясь по существу не менее тесной, приобретает теперь более сложные формы. Большие новые теории возникают не только в результате непосредственных запросов естествознания и техники, но также из внутренних потребностей самой математики. Таково в основном было развитие функции комплексного переменного теории, занявшей в начале и середине 19 в. центральное положение во всем математическом анализе. Другим замечательным примером теории, возникшей в результате внутреннего развития самой математики, явилась геометрия Лобачевского.

     В более непосредственной и непрерывной зависимости от запросов механики и физики происходило формирование векторного и тензорного исчислений. Перенесение векторных и тензорных представлений на бесконечномерные величины происходит в рамках функционального анализа и тесно связывается с потребностями современной физики.

     Таким образом, в результате как внутренних потребностей математики, так и новых запросов естествознания круг количественных отношений и пространственных форм, изучаемых математикой, чрезвычайно расширяется; в него входят отношения, существующие между элементами произвольной группы, векторами, операторами в функциональных пространствах, все разнообразие форм пространств любого числа измерений и т. п.

     Существенная новизна начавшегося в 19 в. этапа развития математики состоит в том, что вопросы необходимого расширения круга подлежащих изучению количественных отношений и пространственных форм становятся предметом сознательного и активного интереса математиков. Если прежде, например, введение в употребление отрицательных и комплексных чисел и точная формулировка правил действий с ними требовали длительной работы, то теперь развитие математики потребовало выработки приемов сознательного и планомерного создания новых геометрических и алгебраических систем.


-1-2-3-



© 2006- 2024  ПМ298
info@pm298.ru
     Электронный справочник по математике: математические формулы по алгебре и геометрии, высшая математика, математика, математические формулы. Задачи с решениями, примеры и задачи по математике, бесплатные решения задач, матанализ , двуполостный гиперболоид вращения

     Современная математика.