Прикладная математика
                               Cправочник математических формул
                                          Примеры и задачи с решениями

Алфавитный указатель  а б в г д е ж з и к л м н о п р с т у ф х ц ч ш щ э ю я  

  • Математические формулы

  • Примеры решения задач

  • Некоторые постоянные
  • Элементарная геометрия
  • Геометрические преобразования
  • Начала анализа и алгебры
  • Уравнения и неравенства
  • Аналитическая геометрия
  • Высшая алгебра
  • Дифференциальное исчисление
  • Дифференциальная геометрия
  • Интегральное исчисление
  • Комплексный анализ
  • Элементы теории поля
  • Тензорное исчисление
  • Дифференциальные уравнения
  • Математическая логика
  • Теория вероятностей и
     математическая статистика





Теорема Больцано-Вейерштрасса

     Теорема. Из любой ограниченной последовательности можно выделить сходящуюся подпоследовательность.

     Доказательство. Так как последовательность ограничена, то она имеет хотя бы одну предельную точку x. В таком случае из этой последовательности можно выделить подпоследовательность, сходящуюся к точке x.

     Замечание 1. Из любой ограниченной последовательности можно выделить монотонную подпоследовательность.

     В самом деле, в силу теоремы Больцано-Вейерштрасса из любой ограниченной последовательности можно выделить сходящуюся подпоследовательность, а из этой подпоследовательности можно выделить монотонную подпоследовательность.

     Замечание 2. Пусть {xn} - ограниченная последовательность, элементы которой находятся в сегменте [a, b]. Тогда предел с любой сходящейся подпоследовательности также находится на сегменте [a, b].

     Действительно, так как , то в силу следствия 2 выполняются неравенства acb. Это и означает, что c находится на сегменте [a, b].

     Отметим, что в отдельных случаях и из неограниченной последовательности также можно выделить сходящуюся подпоследовательность. Например, последовательность 1, 1/2, 2, 1/3, ..., n, 1/(n+1), ... неограниченная, однако подпоследовательность 1/2, 1/3, ..., 1/n, ... ее элементов с четными номерами сходится. Но не из каждой неограниченной последовательности можно выделить сходящуюся подпоследовательность. Например, любая подпоследовательность неограниченной последовательности 1, 2, ..., n, ... расходится. Поэтому теорему Больцано-Вейерштрасса, вообще говоря, нельзя распространить на неограниченные последовательности.



© 2006- 2024  ПМ298
info@pm298.ru
     Электронный справочник по математике: математические формулы по алгебре и геометрии, высшая математика, математика, математические формулы. Задачи с решениями, примеры и задачи по математике, бесплатные решения задач, кардиоида , свертка

     Теорема Больцано-Вейерштрасса.